ODE's with Periodic Input, Resonance
Captured On [2019-11-29 Fri 13:34] Source [[https://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-iii-fourier-series-and-laplace-transform/odes-with-periodic-input-resonance/index.htm][ODE’s with Periodic Input, Resonance | Unit III: Fourier Series and Laplace Transform | Differential Equations | Mathematics | MIT OpenCourseWare]] 1 How can we solve this ODE? 1.1 Front How can we solve this ODE? \(\ddot{x} + 9.1 x = f(t)\), where \(f(t)\) is a odd square wave of period \(2\pi\) with \(f(t) = 1\) for \(0 \lt t \lt \pi\) 1.2 Back Use the Fourier Series of \(f(t)\) \({\displaystyle f(t) = \frac{4}{\pi} \sum_{n \text{ odd}}^{\infty} \frac{\sin(nt)}{n}}\) So the DE: \({\displaystyle \ddot{x} + 9....