Captured On
[2020-01-02 Thu 18:40]
Source
Partial Fractions and Inverse Laplace Transform | Unit III: Fourier Series and Laplace Transform | Differential Equations | Mathematics | MIT OpenCourseWare

1 What is a rational function?

1.1 Front

What is a rational function?

1.2 Back

Is a function that is the ratio of two polynomials

\({\displaystyle \frac{s + }{s^2 + 7s + 9}}\)

2 When can we say that a rational function is proper?

2.1 Front

When can we say that a rational function is proper?

2.2 Back

A rational function is called proper if the degree of the numerator is strictly smaller than the degree of the denominator

For example: \({\displaystyle \frac{s + 1}{s^2 + 7s + 9}}\)

3 What is the objective of long-division of 2 polynomials?

3.1 Front

What is the objective of long-division of 2 polynomials?

3.2 Back

Using long-division we can always write an improper rational function as a polynomial plus a proper rational function.

The partial fraction decomposition only applies to proper functions.

4 When can we do the partial fraction decomposition?

4.1 Front

When can we do the partial fraction decomposition?

4.2 Back

When you have a proper rational function

5 Use long-division to rewrite this rational function?

5.1 Front

Use long-division to rewrite this rational function?

\({\displaystyle \frac{s^3 + 2s + 1}{s^2 + s - 2}}\)

5.2 Back

\({\displaystyle \frac{s^3 + 2s + 1}{s^2 + s - 2} = s - 1 + \frac{5s - 1}{s^2 + s - 2}}\)

6 Compute the partial fraction for this rational function

6.1 Front

Compute the partial fraction for this rational function

\({\displaystyle \frac{3}{(s - 1)(s + 1)(s - 3)}}\)

6.2 Back

\({\displaystyle \frac{3}{(s - 1)(s + 1)(s - 3)} = \frac{A}{s - 1} + \frac{B}{s + 1} + \frac{C}{s - 3}}\)

\({\displaystyle 3 = A(s + 1)(s - 3) + B(s - 1)(s - 3) + C (s - 1)(s + 1)}\)

  • For \(s = 1\), gives \({\displaystyle A = \frac{-3}{4}}\)
  • For \(s = -1\), gives \({\displaystyle B = \frac{3}{8}}\)
  • For \(s = 3\), gives \({\displaystyle C = \frac{3}{8}}\)

\({\displaystyle \frac{3}{(s - 1)(s + 1)(s - 3)} = - \frac{3}{4(s-1)} + \frac{3}{8(s + 1)} + \frac{3}{8 (s - 3)}}\)

7 Compute the partial fraction for this rational function

7.1 Front

Compute the partial fraction for this rational function

\({\displaystyle \frac{s - 1}{(s + 1)(s^2 + 4)}}\)

7.2 Back

\({\displaystyle \frac{s - 1}{(s + 1)(s^2 + 4)} = \frac{A}{s + 1} + \frac{Bs + C}{s^2 + 4}}\)

\({\displaystyle s - 1 = A(s^2 + 4) + (Bs + C)(s + 1) = (A + B)s^2 + (B + C)s + (4A + C)}\)

  • \(s^2\): \(0 = A +B\)
  • \(s\): \(1 = B + C\)
  • \(1\): \(-1 = 4A + C\)

Solving, we get \(A=-2/5\), \(B = 2/5\) and \(C = 3/5\)

8 Compute the partial fraction for this rational function

8.1 Front

Compute the partial fraction for this rational function

\({\displaystyle \frac{1}{(s + 1)(s^2 - 4)}}\)

Only set the partial fractions

8.2 Back

\({\displaystyle \frac{1}{(s + 1)(s^2 - 4)} = \frac{1}{(s + 1)(s + 2)(s - 2)} = \frac{A}{s + 1} + \frac{B}{s + 2} + \frac{C}{s - 2}}\)

9 Compute the partial function for this rational function

9.1 Front

Compute the partial function for this rational function

\({\displaystyle \frac{s^3 + 2s + 1}{s^2 + s - 2}}\)

Only set the partial fractions

9.2 Back

\({\displaystyle \frac{s^3 + 2s + 1}{s^2 + s - 2} = s - 1 + \frac{5s - 1}{s^2 + s - 2} = s - 1 + \frac{A}{s + 2} + \frac{B}{s - 1}}\)

10 How is notated the inverse Laplace transform?

10.1 Front

How is notated the inverse Laplace transform?

10.2 Back

\(\mathcal{L}^{-1}\)

11 What is the inverse Laplace transform of this expression?

11.1 Front

What is the inverse Laplace transform of this expression?

\({\displaystyle \mathcal{L}^{-1} \biggl(\frac{1}{s - 2} \biggr)}\)

11.2 Back

\({\displaystyle e^{2t}}\)

12 What is the inverse Laplace transform of this expression?

12.1 Front

What is the inverse Laplace transform of this expression?

\({\displaystyle \mathcal{L}^{-1} \biggl(\frac{1}{s^2 + 9} \biggr)}\)

12.2 Back

Use the table entry \({\displaystyle \mathcal{L}(\sin(\omega t)) = \frac{\omega}{s^2 + \omega^2}}\) and linearity

\({\displaystyle \frac{1}{3} \sin(3t)}\)

13 What is the inverse Laplace transform of this expression?

13.1 Front

What is the inverse Laplace transform of this expression?

\({\displaystyle \mathcal{L}^{-1} \biggl(\frac{4}{(s - 2)^2} \biggr)}\)

13.2 Back

\({\displaystyle e^{2t} 4t}\)

14 What is the inverse Laplace transform of this expression?

14.1 Front

What is the inverse Laplace transform of this expression?

\({\displaystyle \mathcal{L}^{-1} \biggl(\frac{1}{s^2 + 4s + 13} \biggr)}\)

14.2 Back

Complete the square: \({\displaystyle s^2 + 4s + 13 = s^2 + 4s + 4 + 9 = (s + 2)^2 + 9}\)

\(F(s + 2)\) where \(F(s) = \frac{1}{s^2 + 9}\), where \({\displaystyle f(t) = \frac{\sin(3t)}{3}}\), so using the s-shift rule

\({\displaystyle \mathcal{L}^{-1} (F(s-2)) = e^{-2t} \frac{\sin(3t)}{3}}\)

15 What is the inverse Laplace transform of this expression?

15.1 Front

What is the inverse Laplace transform of this expression?

\({\displaystyle \mathcal{L}^{-1} \biggl(\frac{s-1}{(s+1)(s^2 + 4)} \biggr)}\)

Don’t compute the coefficients

15.2 Back

\({\displaystyle \frac{s-1}{(s + 1)(s^2 + 4)} = \frac{A}{s+1} + \frac{Bs + C}{s^2 + 4}}\)

\({\displaystyle \mathcal{L}^{-1} \biggl( \frac{A}{s+1} + \frac{Bs + C}{s^2 + 4} \biggr) = A e^{-t} + B \cos(2t) + \frac{C}{2} \sin(2t)}\)

16 Which is the partial fraction of this rational function?

16.1 Front

Which is the partial fraction of this rational function?

\({\displaystyle \frac{2s}{s^3(s + 1)^2 (s + 2)}}\)

Don’t compute the coefficients

16.2 Back

\({\displaystyle \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s^3} + \frac{D}{s + 1} + \frac{E}{(s + 1)^2} + \frac{F}{s + 2}}\)

17 Which is the partial fraction of this rational function?

17.1 Front

Which is the partial fraction of this rational function?

\({\displaystyle \frac{2s}{s(s^2 + 1)^2(s^2 + 4s + 2)}}\)

Don’t compute the coefficients

17.2 Back

\({\displaystyle \frac{A}{s} + \frac{Bs + C}{s^2 + 1} + \frac{Ds +E}{(s^2 + 1)^2} + \frac{Fs + G}{s^2 + 4s + 6}}\)

18 What is the inverse Laplace transform of this expression?

18.1 Front

What is the inverse Laplace transform of this expression?

\({\displaystyle \mathcal{L}^{-1} \biggl( \frac{Ds}{(s^2 + 1)^2} \biggr)}\)

18.2 Back

\({\displaystyle D \frac{t}{2} \sin(t)}\)

19 What is the inverse Laplace transform of this expression?

19.1 Front

What is the inverse Laplace transform of this expression?

\({\displaystyle \mathcal{L}^{-1} \biggl( \frac{E}{(s^2 + 1)^2} \biggr)}\)

19.2 Back

\({\displaystyle E \frac{1}{2} (\sin(t) - t \cos(t))}\)

20 What is the inverse Laplace transform of this expression?

20.1 Front

What is the inverse Laplace transform of this expression?

\({\displaystyle \mathcal{L}^{-1} \biggl(\frac{Fs + G}{s^2 + 4s + 6} \biggr)}\)

20.2 Back

Complete the square: \(s^2 + 4s + 6 = (s + 2)^2 + 2\)

\({\displaystyle \mathcal{L}^{-1} \biggl(\frac{F(s + 2) + G - 2F}{(s + 2)^2 + 2} \biggr) = Fe^{-2t} \cos(\sqrt{2}t) + \frac{1}{\sqrt{2}} (G - 2F)e^{-2t} \sin(\sqrt{2}t)}\)

21 Describe the process of cover-up to decompose this partial fraction

21.1 Front

Describe the process of cover-up to decompose this partial fraction

\({\displaystyle \frac{s-7}{(s-1)(s+2)}}\)

Why does this method work?

21.2 Back

\({\displaystyle \frac{s-7}{(s-1)(s+2)} = \frac{A}{s-1} + \frac{B}{s+2}}\)

To determine \(A\) by the cover-up method, on the left-hand side we mentally remove (or cover up with a finger) the factor \(s - 1\) associated with \(A\), and substitute \(s = 1\) into what’s left; this gives \(A\)

\({\displaystyle \frac{s-7}{(s + 2)} \bigg|_{s=1} = \frac{1 - 7}{1 + 2} = -2 = A}\)

Similarly, \(B\) is found by covering up the factor \(s + 2\) on the left, and substituting \(s = -2\) into what’s left

\({\displaystyle \frac{s - 7}{(s - 1)} \bigg|_{s = -2} = \frac{-2 - 7}{-2 -1} = 3 = B}\)

\({\displaystyle \frac{s-7}{(s-1)(s+2)} = \frac{-2}{s-1} + \frac{3}{s+2}}\)

The reason is simple. The “right” way to determine \(A\) from the equation would be to multiply both sides by \((s - 1)\)

\({\displaystyle \frac{s-7}{(s + 2)} = A + \frac{B}{s+2}(s - 1)}\)

Now if we substitute \(s = 1\), what we get is exactly \({\displaystyle A = \frac{1 - 7}{1 + 2}}\), since the term on the right disappears

22 What is the inverse Laplace transform of this expression?

22.1 Front

What is the inverse Laplace transform of this expression?

\({\displaystyle \mathcal{L}^{-1} \biggl(\frac{e^{-5s}}{s^2 - 4} \biggr)}\)

22.2 Back

\({\displaystyle u(t - 5) \biggl(\frac{1}{4} e^{2(t-5)} - \frac{1}{4} e^{-2(t - 5)} \biggr)}\)

23 What is the inverse Laplace transform of this expression?

23.1 Front

What is the inverse Laplace transform of this expression?

\({\displaystyle \mathcal{L}^{-1} \biggl( \frac{5 - 2s}{s^2 + 7s + 10} \biggr)}\)

23.2 Back

\({\displaystyle \frac{5 - 2s}{(s + 2)(s + 5)} = \frac{3}{s+2} - \frac{5}{s + 5}}\)

\({\displaystyle \mathcal{L}^{-1} \biggl(\frac{3}{s+2} - \frac{5}{s + 5} \biggr) = 3 e^{-2t} - 5e^{-5t}}\)