Captured On [2019-11-29 Fri 13:34] Source [[https://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-iii-fourier-series-and-laplace-transform/odes-with-periodic-input-resonance/index.htm ][ODE’s with Periodic Input, Resonance | Unit III: Fourier Series and Laplace Transform | Differential Equations | Mathematics | MIT OpenCourseWare]]
1 How can we solve this ODE?# 1.1 Front# How can we solve this ODE?
x ¨ + 9.1 x = f ( t ) \ddot{x} + 9.1 x = f(t) x ¨ + 9.1 x = f ( t ) , where f ( t ) f(t) f ( t ) is a odd square wave of period 2 π 2\pi 2 π
with f ( t ) = 1 f(t) = 1 f ( t ) = 1 for 0 < t < π 0 \lt t \lt \pi 0 < t < π
1.2 Back# Use the Fourier Series of f ( t ) f(t) f ( t ) f ( t ) = 4 π ∑ n odd ∞ sin ( n t ) n {\displaystyle f(t) = \frac{4}{\pi} \sum_{n \text{ odd}}^{\infty}
\frac{\sin(nt)}{n}} f ( t ) = π 4 n odd ∑ ∞ n sin ( n t ) So the DE: x ¨ + 9.1 x = 4 π ( sin ( t ) + sin ( 3 t ) 3 + sin ( 5 t ) 5 + … ) {\displaystyle \ddot{x} + 9.1 x = \frac{4}{\pi} \biggl(\sin(t) +
\frac{\sin(3t)}{3} + \frac{\sin(5t)}{5} + \dots \biggr)} x ¨ + 9.1 x = π 4 ( sin ( t ) + 3 sin ( 3 t ) + 5 sin ( 5 t ) + … ) Solve the DE with a single sine function as inputx n ¨ + 9.1 x n = sin ( n t ) n {\displaystyle \ddot{x_n} + 9.1 x_n = \frac{\sin(nt)}{n}} x n ¨ + 9.1 x n = n sin ( n t ) We use the index n n n so we can tell our solutions apart Using the superposition to add the factor 4 π \frac{4}{\pi} π 4 and sum of the
others sin \sin sin Using complex replacement and ERFx n , p ( t ) = sin ( n t ) n ( 9.1 − n 2 ) {\displaystyle x_{n,p}(t) = \frac{\sin(nt)}{n (9.1 - n^2)}} x n , p ( t ) = n ( 9.1 − n 2 ) sin ( n t ) Using superposition to get a particular solution x p ( t ) x_p(t) x p ( t ) x s p ( t ) = 4 π ∑ n odd ∞ x n , p ( t ) = 4 π ∑ n odd ∞ sin ( n t ) n ( 9.1 − n 2 ) {\displaystyle x_{sp}(t) = \frac{4}{\pi} \sum_{n \text{ odd}}^{\infty}
x_{n,p}(t) = \frac{4}{\pi} \sum_{n \text{ odd}}^{\infty} \frac{\sin(nt)}{n
(9.1 - n^2)}} x s p ( t ) = π 4 n odd ∑ ∞ x n , p ( t ) = π 4 n odd ∑ ∞ n ( 9.1 − n 2 ) sin ( n t ) This solution is called the steady periodic solution.
2 What is the Fourier Series for this function?# 2.1 Front# What is the Fourier Series for this function?
f ( t ) f(t) f ( t ) is a odd square wave of period 2 π 2\pi 2 π with f ( t ) = 1 f(t) = 1 f ( t ) = 1 for 0 < t < π 0 \lt t
\lt \pi 0 < t < π
By heart
2.2 Back# 4 π ∑ n odd ∞ sin ( n t ) n {\displaystyle \frac{4}{\pi} \sum_{n \text{ odd}}^{\infty} \frac{\sin(nt)}{n}} π 4 n odd ∑ ∞ n sin ( n t )
3 As ω n \omega_{n} ω n gets close to 1,3 or 5 what is the dominant frequency in the ouput?# 3.1 Front# As $\omega_{n}$ gets close to 1,3 or 5 what is the dominant frequency in the ouput?As $\omega_{}$
x ¨ + ω n 2 x = ω n 2 f ( t ) {\displaystyle \ddot{x} + \omega_n^2 x = \omega_n^2 f(t)} x ¨ + ω n 2 x = ω n 2 f ( t )
where f ( t ) f(t) f ( t ) is a odd square wave of period 2 π 2\pi 2 π with f ( t ) = 1 f(t) = 1 f ( t ) = 1 for 0 < t < π 0
\lt t \lt \pi 0 < t < π
3.2 Back# With ω n \omega_n ω n near 1 1 1 the output resembles a frequency 1 1 1 sine wave. For
ω n \omega_n ω n near 3 3 3 the dominant frequency in the output is 3 3 3 , there are three
peaks in the oscillation over one cycle of the square wave. Likewise for
ω n \omega_n ω n near 5 5 5 the dominant frequency is 5 5 5
f ( t ) = 4 π ∑ n odd ∞ sin ( n t ) n {\displaystyle f(t) = \frac{4}{\pi} \sum_{n \text{ odd}}^{\infty}
\frac{\sin(nt)}{n}} f ( t ) = π 4 n odd ∑ ∞ n sin ( n t )
Each term in the series affects the system. If the system has natural frequency
3 3 3 then the sin ( 3 t ) \sin(3t) sin ( 3 t ) term causes it to resonate with a large amplitude at
that frequency. Thus, the response to that term is far larger than the response
to any other term.
4 How can we solve this damped harmonic oscillator?# 4.1 Front# How can we solve this damped harmonic oscillator?
x ¨ + 2 x ˙ + 9 x = f ( t ) \ddot{x} + 2 \dot{x} + 9x = f(t) x ¨ + 2 x ˙ + 9 x = f ( t )
Where f ( t ) f(t) f ( t ) is a triangle wave
4.2 Back# Get the Fourier Series of f ( t ) f(t) f ( t ) f ( t ) = 1 2 − 4 π 2 ( cos ( t ) + cos ( 3 t ) 3 2 + cos ( 5 t ) 5 2 + ⋯ ) {\displaystyle f(t) = \frac{1}{2} - \frac{4}{\pi^2} \biggl(\cos(t) +
\frac{\cos(3t)}{3^2} + \frac{\cos(5t)}{5^2} + \cdots \biggr)} f ( t ) = 2 1 − π 2 4 ( cos ( t ) + 3 2 cos ( 3 t ) + 5 2 cos ( 5 t ) + ⋯ ) Solving for the individual componentsNot including Fourier coefficients of the input in the DE x n ¨ + 2 x n ˙ + 9 x n = cos ( n t ) \ddot{x_n} + 2 \dot{x_n} + 9 x_{n} = \cos(nt) x n ¨ + 2 x n ˙ + 9 x n = cos ( n t ) For n = 0 n = 0 n = 0 , x n , p = 1 / 9 x_{n,p} = 1/9 x n , p = 1/9 For n ≥ 1 n \geq 1 n ≥ 1 Complex replacement: z n ¨ + 2 z n ˙ + 9 z n = e i n t \ddot{z_n} + 2 \dot{z_n} + 9 z_n = e^{int} z n ¨ + 2 z n ˙ + 9 z n = e in t , where
x n = Re ( z n ) x_n = \operatorname{Re}(z_n) x n = Re ( z n ) ERF: z n , p = e i n t 9 − n 2 + 2 i n {\displaystyle z_{n,p} = \frac{e^{int}}{9 - n^2 + 2in}} z n , p = 9 − n 2 + 2 in e in t Polar coordinates: 9 − n 2 + 2 i n = R n e i ϕ n 9 - n^2 + 2in = R_n e^{i \phi_n} 9 − n 2 + 2 in = R n e i ϕ n R n = ( 9 − n 2 ) 2 + 4 n 2 R_n = \sqrt{(9 - n^2)^2 + 4n^2} R n = ( 9 − n 2 ) 2 + 4 n 2 ϕ n = Arg ( 9 − n 2 + 2 i n ) = arctan 2 n 9 − n 2 \phi_n = \operatorname{Arg}(9 - n^2 + 2in) = \arctan \frac{2n}{9 -
n^2} ϕ n = Arg ( 9 − n 2 + 2 in ) = arctan 9 − n 2 2 n Thus, z n , p = 1 R n e i ( n t − ϕ n ) {\displaystyle z_{n,p} = \frac{1}{R_n} e^{i(nt - \phi_n)}} z n , p = R n 1 e i ( n t − ϕ n ) , which
implies x n , p = cos ( n t − ϕ n ) R n x_{n,p} = \frac{\cos(nt - \phi_n)}{R_n} x n , p = R n c o s ( n t − ϕ n ) SuperpositionAdding Fourier coefficients x s p ( t ) = 1 18 − 4 π 2 ( cos ( t − ϕ 1 ) R 1 + cos ( 3 t − ϕ 3 ) 3 2 R 3 + cos ( 5 t − ϕ 5 ) 5 2 R 5 + ⋯ ) {\displaystyle x_{sp}(t) = \frac{1}{18} - \frac{4}{\pi^2}
\biggl(\frac{\cos(t - \phi_1)}{R_1} + \frac{\cos(3t - \phi_3)}{3^2 R_3} +
\frac{\cos(5t - \phi_5)}{5^2 R_5} + \cdots \biggr)} x s p ( t ) = 18 1 − π 2 4 ( R 1 cos ( t − ϕ 1 ) + 3 2 R 3 cos ( 3 t − ϕ 3 ) + 5 2 R 5 cos ( 5 t − ϕ 5 ) + ⋯ ) 5 For which values of ω n \omega_{n} ω n this solution is not periodic?# 5.1 Front# For which values of $\omega_{n}$ this solution is not periodic?
x p ( t ) = π 2 ω n 2 − 4 π ∑ n odd ∞ cos ( k ω t ) k 2 ( ω n 2 − k 2 ω 2 ) {\displaystyle x_p(t) = \frac{\pi}{2 \omega_n^2} - \frac{4}{\pi} \sum_{n
\text{odd}}^{\infty} \frac{\cos(k \omega t)}{k^2(\omega_n^2 - k^2 \omega^2)}} x p ( t ) = 2 ω n 2 π − π 4 n odd ∑ ∞ k 2 ( ω n 2 − k 2 ω 2 ) cos ( kω t )
For this oscillator: x ¨ + ω n 2 x = f ( t ) \ddot{x} + \omega_n^2 x = f(t) x ¨ + ω n 2 x = f ( t ) , where f ( t ) = π 2 − 4 π ∑ n odd ∞ cos ( k ω t ) k 2 {\displaystyle
f(t) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n \text{ odd}}^{\infty} \frac{\cos(k
\omega t)}{k^2}} f ( t ) = 2 π − π 4 n odd ∑ ∞ k 2 cos ( kω t )
5.2 Back# This solution experiences a resonance if and only if ω n \omega_n ω n (natural
frequency of the system) coincides with the angular frequency of a term with
nonzero coefficient in the Fourier expansion of the driving function f ( t ) f(t) f ( t )
So, we get periodic solutions for all ω n ≠ k ( 0 , 1 , 3 , 5 , 7 , … ) ω \omega_n \neq k(0, 1, 3, 5, 7, \dots)
\omega ω n = k ( 0 , 1 , 3 , 5 , 7 , … ) ω
6 Are there frequencies at which there is more than one periodic solution?# 6.1 Front# Are there frequencies at which there is more than one periodic solution?
For the oscillator system: x ¨ + ω n 2 x = f ( t ) \ddot{x} + \omega_n^2 x = f(t) x ¨ + ω n 2 x = f ( t ) , where
f ( t ) = π 2 − 4 π ∑ n odd ∞ cos ( k ω t ) k 2 {\displaystyle f(t) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n \text{
odd}}^{\infty} \frac{\cos(k \omega t)}{k^2}} f ( t ) = 2 π − π 4 n odd ∑ ∞ k 2 cos ( kω t )
It’s particular solution is x p ( t ) = π 2 ω n 2 − 4 π ∑ n odd ∞ cos ( k ω t ) k 2 ( ω n 2 − k 2 ω 2 ) {\displaystyle x_p(t) = \frac{\pi}{2 \omega_n^2} -
\frac{4}{\pi} \sum_{n \text{odd}}^{\infty} \frac{\cos(k \omega
t)}{k^2(\omega_n^2 - k^2 \omega^2)}} x p ( t ) = 2 ω n 2 π − π 4 n odd ∑ ∞ k 2 ( ω n 2 − k 2 ω 2 ) cos ( kω t )
6.2 Back# Yes, for special frequencies. The homogeneous solution for the system is
x h = c 1 cos ( ω n t ) + c 2 sin ( ω n t ) {\displaystyle x_h = c_1 \cos(\omega_n t) + c_2 \sin(\omega_n t)} x h = c 1 cos ( ω n t ) + c 2 sin ( ω n t )
If the steady periodic solution, x p x_p x p , has a period in common with x h x_h x h then
we can add them together to get many solutions with that common period.
Base period of x h x_h x h is 2 π / ω n 2\pi / \omega_n 2 π / ω n Base period of x p x_p x p is 2 π / ω 2\pi / \omega 2 π / ω provided ω n ≠ 0 , ω , 3 ω , … \omega_n \neq 0, \omega, 3
\omega, \dots ω n = 0 , ω , 3 ω , … The functions x h x_h x h and x p x_p x p have a common period when some positive integer
multiple of the base period of x h x_h x h equals a multiple of the base period of
x p x_p x p
M 2 π ω n = N 2 π ω {\displaystyle M \frac{2\pi}{\omega_n} = N \frac{2\pi}{\omega}} M ω n 2 π = N ω 2 π , for some
positive integers M M M and N N N . So
ω n = M N ω {\displaystyle \omega_n = \frac{M}{N} \omega} ω n = N M ω
There is more than one periodic solution if ω n \omega_n ω n is any positive rational
multiple of ω \omega ω except 1 , 3 , 5 , … 1,3,5, \dots 1 , 3 , 5 , …
7 When can we say that this system is in pure resonance without calculating the solution?# 7.1 Front# When can we say that this system is in pure resonance without calculating the solution?
m x ¨ + k x = f ( t ) m \ddot{x} + k x = f(t) m x ¨ + k x = f ( t ) , where f ( t ) f(t) f ( t ) is a periodic function
7.2 Back# The natural frequency of the spring-mass system is ω n = k m {\displaystyle \omega_n =
\sqrt{\frac{k}{m}}} ω n = m k
The typical term of the Fourier expansion of f ( t ) f(t) f ( t ) is cos ( n π L t ) {\displaystyle \cos(n
\frac{\pi}{L} t)} cos ( n L π t ) and sin ( n π L t ) {\displaystyle \sin(n \frac{\pi}{L} t)} sin ( n L π t ) ; thus we get
pure resonance if and only if the angular frequency of any of the Fourier terms
is equals to ω n \omega_n ω n ,
ω n = n π L {\displaystyle \omega_n = \frac{n \pi}{L}} ω n = L nπ , where n n n is an integer
8 How can we expand this expression?# 8.1 Front# How can we expand this expression?
∑ n odd ∞ sin ( n ( t + π / 2 ) ) {\displaystyle \sum_{n \text{odd}}^{\infty} \sin(n(t + \pi/2))} n odd ∑ ∞ sin ( n ( t + π /2 ))
8.2 Back# cos ( t ) − cos ( 3 t ) + cos ( 5 t ) − cos ( 7 t ) + ⋯ {\displaystyle \cos(t) - \cos(3t) + \cos(5t) - \cos(7t) + \cdots} cos ( t ) − cos ( 3 t ) + cos ( 5 t ) − cos ( 7 t ) + ⋯