Captured On
[2020-02-06 Thu 17:17]
Source
Session 85: Physical Meaning of Flux; Del Notation | Part B: Flux and the Divergence Theorem | 4. Triple Integrals and Surface Integrals in 3-Space | Multivariable Calculus | Mathematics | MIT OpenCourseWare

1 Chalkboard

Figure 1: Recall divergence theorem

Figure 1: Recall divergence theorem

Figure 2: “Del” notation

Figure 2: “Del” notation

Figure 3: Physical interpretation of divergence

Figure 3: Physical interpretation of divergence

Figure 4: Amount of fluid leaving \(D\) per unit time

Figure 4: Amount of fluid leaving \(D\) per unit time

2 What means “source rate”?

2.1 Front

What means “source rate”?

\(\text{div} \vb{F}\) is “source rate”. Explain by words

2.2 Back

Amount of flux generated per unit volume. With Gauss-Green’s Theorem is the amount of fluid leaving \(D\) per unit time

3 Expand this equation

3.1 Front

Expand this equation

\({\displaystyle \grad{} \cross \vb{F}}\), Let \(\vb{F} = \ev{P,Q,R}\)

3.2 Back

\({\displaystyle \biggl(\pdv{R}{y} - \pdv{Q}{z} \biggr) \vu{i} + \biggl( \pdv{P}{z} - \pdv{R}{x} \biggr) \vu{j} + \biggl( \pdv{Q}{x} - \pdv{P}{y} \biggr) \vu{k}}\)

4 Expand this equation

4.1 Front

Expand this equation

\({\displaystyle \vb{F} \cdot \grad{}}\), Let \(\vb{F} = \ev{P,Q,R}\)

4.2 Back

\({\displaystyle P \pdv{}{x} + Q \pdv{}{y} + R \pdv{}{z}}\)

5 Expand this equation

5.1 Front

Expand this equation

\({\displaystyle \frac{1}{2} \grad{} (\vb{F} \cdot \vb{F})}\)

5.2 Back

\({\displaystyle \frac{1}{2} \grad{} (P^2 + Q^2 + R^2) = \biggl(P \pdv{P}{x} + Q \pdv{Q}{x} + R \pdv{R}{x} \biggr) \vu{i} + \biggl(P \pdv{P}{y} + Q \pdv{Q}{y} + R \pdv{R}{y} \biggr) \vu{j} + \biggl(P \pdv{P}{z} + Q \pdv{Q}{z} + R \pdv{R}{z} \biggr) \vu{k}}\)