Here we will extend Green’s theorem in flux form to the divergence (or Gauss’) theorem relating the flux of a vector field through a closed surface to a triple integral over the region it encloses. Before learning this theorem we will have to discuss the surface integrals, flux through a surface and the divergence of a vector field.

Last Modification: 2020-09-17 Thu 12:33

Captured On
[2020-01-18 Sat]
Source
Part B: Flux and the Divergence Theorem | 4. Triple Integrals and Surface Integrals in 3-Space | Multivariable Calculus | Mathematics | MIT OpenCourseWare