Captured On
[2020-02-05 Wed 19:41]
Source
Session 2: Dot Products | Part A: Vectors, Determinants and Planes | 1. Vectors and Matrices | Multivariable Calculus | Mathematics | MIT OpenCourseWare

1 Chalkboard

Figure 1: Dot Product Definition

Figure 1: Dot Product Definition

Figure 2: What does geometic definition mean?

Figure 2: What does geometic definition mean?

Figure 3: Dot product of combined vectors

Figure 3: Dot product of combined vectors

2 What is the dot product of 2 vectors?

2.1 Front

What is the dot product of 2 vectors?

2.2 Back

  • Is one way to combining (“multiplying”) two vectors
  • The output is a scalar
  • Algebraically
    • \(A \cdot B = a_1b_1 + a_2b_2\)
  • Geometrically
    • \(A \cdot B = |A| |B| \cos(\theta)\)

3 How can we proof the dot product geometrically?

3.1 Front

How can we proof the dot product geometrically?

3.2 Back

  • Law of cosines
    • \(|\vb{A} - \vb{B}|^2 = |\vb{A}|^2 + |\vb{B}|^2 - 2|\vb{A}||\vb{B}| \cos(\theta)\)
  • Expanding \(|A - B|^2\)
    • \(|\vb{A} - \vb{B}|^2 = (\vb{A} - \vb{B}) \cdot (\vb{A} - \vb{B}) = \vb{A} \cdot \vb{A} - \vb{A} \cdot \vb{B} - \vb{B} \cdot \vb{A} + \vb{B} \cdot \vb{B} = |\vb{A}|^2 + |\vb{B}|^2 - 2\vb{A} \cdot \vb{B}\)
  • Comparing the 2 equations
    • \(\vb{A} \cdot \vb{B} = |\vb{A}||\vb{B}| \cos(\theta)\)

4 What does mean that \(\vb{A} \cdot \vb{B} = 0\)?

4.1 Front

What does mean that $\vb{A} \cdot \vb{B} = 0$?

4.2 Back

Two vectors are perpendicular to each other, we say they are orthogonal

  • \(\cos(\pi/2) = 0\)
  • \(\vb{A} \perp \vb{B} \Leftrightarrow \vb{A} \cdot \vb{B} = 0\)

5 Which is the dot product of the 1 vector by itself?

5.1 Front

Which is the dot product of the 1 vector by itself?

\(\vb{A} \cdot \vb{A}\)

5.2 Back

  • Algebraically
    • \(\vb{A} \cdot \vb{A} = \ev{a_1, a_2, a_3} \cdot \ev{a_1, a_2, a_3} = a_1^2 + a_2^2 + a_3^2 = \abs{\vb{A}}^{2}\)
  • Geometrically
    • \(\vb{A} \cdot \vb{A} = \abs{\vb{A}} \abs{\vb{A}} \cos \theta = \abs{\vb{A}}^2\)