Captured On [2020-02-05 Wed 19:49] Source Session 6: Volumes and Determinants in Space | Part A: Vectors, Determinants and Planes | 1. Vectors and Matrices | Multivariable Calculus | Mathematics | MIT OpenCourseWare 1 Chalkboard Figure 1: Determinant in space
Figure 2: Volume of parallelepiped
2 What is the volume between 3 vectors? 2.1 Front What is the volume between 3 vectors?
2.2 Back With determinants \(\abs{\det(\vb{A}, \vb{B}, \vb{C})}\) With cross product Volume = area(base) height \(V = \abs{\vb{A} \cross \vb{B}} (\vb{C} \cdot \hat{n})\) \({\displaystyle \hat{n} = \frac{\vb{A} \cross \vb{B}}{\abs{\vb{A} \cross \vb{B}}}}\) \({\displaystyle V = \abs{\vb{A} \cross \vb{B}} (\vb{C} \cdot \frac{\vb{A} \cross \vb{B}}{\abs{\vb{A} \cross \vb{B}}}) = \vb{C} \cdot (\vb{A} \cross \vb{B})}\) 3 What happens if \(\vb{a} \cross \vb{b} = 0\)?...